Electron Tomography of Whole Cells

- filling the gap between conventional microscopy and protein crystallography

Kenneth H. Downing Lawrence Berkeley National Laboratory

The gap between traditional EM and structural genomics initiatives

- Cellular contexts
- Architecture of many multidomain proteins and complexes
- Conformational variability
- Structures of many membrane proteins
- Many high resolution details

Fundamental challenges in biological EM

- Preserving native structure within microscope
- Obtaining 3D information from projections
- Dose limitations
- Technology well developed for molecular imaging, not so much for tomography

Principles of Tomography

Baumeister et al., Trends in Cell Biology 9:81

A first application - mechanosensory apparatus of copepods

Microtubule-based structure, visualized by conventional embedding & sectioning

Segmenting volume identifies components

"Minimal" cell tomography

- Goal to map major protein complexes within the cell
- Mycoplasma genitalium, mesoplasma florum
- Smallest free-living organisms known (as small as .2 microns in diameter)
- Only 300-500 genes
- MG Target of Berkeley high-throughput X-ray crystallography consortium

The technology of tomography

Requirements to meet the goals --

an electron microscope with:

eucentric goniometer

300 kV

FEG

liquid Helium cooling

energy filter

specimen prepared in 'native' state

computer matching of observed densities

JEOL-3100FFC at LBNL

Mycoplasma genitalium -- visualized by conventional methods

Mesoplasma florum

ice-embedded using state-of-the-art equipment

Sectioning through MF 3-D volume

Segmented / Interpreted volume

MF internal structure, complexity of prokaryotic cell

Ellis, R.J. (2001) Current Op. in Struct. Biol. 11:114

Magnetospirillum serpens

magnetotactic bacteria
precipitates iron in magnetite particles
thickness is compatible with electron microscopy
imaged in frozen-hydrated preparations
substructures visible even in projection

Conclusions

Electron tomography can still benefit from significant technical development

Already we can see a wealth of internal structure in intact cells prepared in a "native" state.

Eventually should be able to identify locations and interactions of macromolecules